Certificate-based Authorization Policy in a PKI
Environment
MARY R. THOMPSON, ABDELILAH ESSIARI

AND SRILEKHA MUDUMBAI
LAWRENCE BERKELEY NATIONAL LABORATORY

The major emphasis of Public Key Infrastructure has been to provide a cryptographically secure means of
authenticating identities. However, procedures for authorizing the holders of these identities to perform specific
actions still need additional research and development. While there are a number of proposed standards for
authorization structures and protocols such as KeyNote, SPKI and SAML based on X.509 or other key-based
identities, none have been widely adopted. As part of an effort to use X.509 identities to provide authorization
in highly distributed environments, we have developed and deployed an authorization service based on X.509
identified users and access policy contained in certificates signed by X.509 identified stakeholders. The major
goal of this system, called Akenti, is to produce a usable authorization system for an environment consisting of
distributed resources used by geographically and administratively distributed users. Akenti assumes
communication between users and resources over a secure protocol such as Transport Layer Security (TLS) to
provide mutual authentication with X.509 certificates. This paper explains the authorization model and policy
language used by Akenti, and how we have implemented an Apache authorization module to provide Akenti
authorization.

Categories and Subject Descriptors: D.2.11 [Software Engineering], Software Architectures, Policy languages,
D.4.6 [Operating Systems], Security and Protection

General Terms: Security, Languages

Additional Key Words and Phrases: Public Key Infrastructure, Digital Certificates, XML

1. INTRODUCTION

There is a significant and growing set of distributed computing environments where the
resources, resource stakeholders and users are geographically and organizationally
distributed. The DOE-sponsored Collaboratories [Agarwal, et al. 1998] and various
“Computational Grids” [Foster and Kesselman 1999] are examples of these, as well as

the ubiquitous Web-controlled sets of documents and services. These systems effectively

This work is supported by the U. S. Department of Energy, Office of Science, Office of Advanced Scientific

Computing Research, Mathematical, Information and Computation Sciences office (http://

www.er.doe.gov/production/octr/mics), under contract DE-AC03-76SF00098 with the University of

California. See the disclaimer at http://www-library.Ibl.gov/teid/tmRco/howto/RcoBerkeleyLabDisclaimer.htm

This document is report LBNL-51616

Author Present Addresses: M. Thompson, A. Essiari, S. Mudumbai, Lawrence Berkeley National Laboratory

MS50B-2239 1 Cyclotron Rd. Berkeley, CA 94720 mrthompson@Ilbl.gov, aessiari@Ibl.gov,

srilek@yahoo.com

An earlier version of this paper was previously published as ”Authorization Policy in a

PKI Environment” M.Thompson, S.Mudumbai, A.Essiari, W Chin Proceedings of the 1st

Annual NIST workshop on PKI, Apr 2002.

Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

© 2001 ACM 1073-0516/01/0300-0034 $5.00

define a virtual organization whose members and resources span many different real
organizations. These virtual organizations need a way to authenticate and then authorize
their users.

One of the characteristics of a collaboratory or Grid is that both the stakeholders and
users may come from many different administrative domains. Thus, the virtual
organization needs to identify its users in a domain neutral manner. The traditional
candidates for cross-domain identities are Kerberos [Kohl, et al. 1993] and PKI
[Arsenault, et al. 2002]. Kerberos is mostly used within a single administrative domain,
although there are many examples of cross-authenticated Kerberos realms, where the
Kerberos administrators have agreed to accept tokens from another realm. Negotiating
cross-realm agreements is often a lengthy and complex process. Some examples of such
domains are universities, where there may be multiple Kerberos realms within the
university, and the DOE’s ASCI-DisCom? program [DISCOM] that connects Lawrence
Livermore National Laboratory, Los Alamos National Laboratory and Sandia National
Laboratories in a computational Grid.

Looser collaborations, such as Grids based on Globus® [Foster, et al. 2001]
middleware, [IPG, PPDG] and collaboratories [Pancerella, et al. 1999, NFC] have
chosen to use PKI identities to authenticate members. These organizations either run a
Certification Authority (CA) of their own and/or accept certificates from a set of trusted
CAs. Establishing trusted CA relationships can also be a lengthy process, but to the
extent that the trust is by an individual resource provider rather than the whole site, and
that many current collaboratories and Grids are experimental in nature, the trust relations
have been established on an informal basis by the researchers, rather than the system
security administrators. Once a collaboration has decided to use PKI identities to
authenticate users, it needs to develop an authorization system using those identities plus
some additional access policy information for all of its resources.

Another characteristic of collaboratories and Grids is that their resources, such as
large scientific instruments, computing resources and data stores, may have more than
one person (called a stakeholder) who needs to control access to the resource. For
example, when remote control of an instrument is allowed, the instrument administrators
may want assurance that any user who can control the instrument has passed a local
training course, while the principal investigator may be mostly concerned that the person
controlling the instrument during his allowed time is a member of his research group. An
authorization system that allows access policy to be defined independently and remotely

from the resource gateway is desirable.

Standard access control methods typically use a central repository located at the
resource site for authorization policy. While this centralization of policy on a secure host
ensures that it can be trusted, it usually requires the stakeholder to have privileged access
to the resource site in order to set the policy. Also such systems, to the extent that they
use the underlying operating system for actual access control, require that all users of a
shared resource must have a local account on the system. The requirement for individual
system accounts on the resource machine does not scale well.

We have developed the Akenti [Thompson, et al. 1999] authorization system to meet
these two needs: to use a virtual organization-wide user identity (in our case an X.509
public key certificate); and to facilitate setting access policy by multiple independent
stakeholders remote from the actual resource gateway. The goal of the Akenti project is
to provide a practical, easy to use, authorization service that meets the needs of
collaboratories and computational Grids.

The rest of this paper is organized as follows. Section 2 explains the authorization
model and policy language that we use and compares this to some of the other early work
in authorization. Section 3 describes how we have implemented an Apache authorization
module to provide the same authorization policy and mechanism for resources accessed
via a Web browser as accessed by other remote methods such as Globus job submission
[Foster, et al. 2001]. Section 4 presents some performance measurements of our current
implementation and section 5 compares Akenti to some newer distributed authority

systems and standards.

2. AKENTI

Akenti assumes that X.509 certificates [Housley, et al. 2001] and the SSL/TLS [Dierks
and Allen 1999] connection protocols have been used to securely authenticate a user that
is requesting access to a resource. It represents the authorization policy for a resource as a
set of (possibly) distributed certificates digitally signed by unrelated stakeholders from
different domains. These policy certificates are independently created by authorized
stakeholders. When an authorization decision needs to be made, the Akenti policy engine
gathers up all the relevant certificates for the user and the resource, verifies them, and

determines the users rights with respect to the resource.

2.1 Authorization model
The Akenti model consists of resources that are being accessed via a resource gateway

(the Policy Enforcement Point - PEP) by users. These users connect to the resource

gateway using the SSL handshake protocol to present authenticated X.509 certificates.
The stakeholders for the resources express access constraints on the resources as a set of
signed certificates, a few of which are self-signed and must be stored on a known secure
host (probably the resource gateway machine), but most of which can be stored remotely.
These certificates express the attributes a user must have in order to get specific rights to
a resource, who is trusted to create use-condition statements and who can attest to a user’s
attributes. At the time of the resource access, the resource gatekeeper (PEP) asks a trusted
Akenti server (the Policy Decision Point - PDP), what access the user has to the resource.
The Akenti server finds all the relevant certificates, verifies that each one is signed by an

acceptable issuer, evaluates them, and returns the allowed access. See Figure 1.

Resources

h
=

Resource

Gateway Akenti

User

Policy
Certificates

Figure 1 Akenti Authorization Model

There are several models for authorization systems. One is the pull model where the
user presents only his authenticated identity to the gatekeeper who finds (pulls) the policy
information for the resource and evaluates the user’s access. A classic example of this is
local file system access where the user id of the process that is attempting to reference the
file is compared to the access control list of the file. The other general model is the push
model, where the user presents one or more tokens or assertions which grant the holder
specific rights to the resource. In this model, the gatekeeper has to verify that the user has
the rights to use the tokens and then to interpret the rights that have been presented. The
original examples of this model were capability-based operating systems where access to
files and other objects was granted on the basis of unforgeable tokens, called capabilities,

associated with a process [Levy 1984]. With the growing use of digitally signed

certificates that can be verified for data integrity and authenticity, the push model is
gaining wider usage. There are also hybrids of the two models, such as when a user
presents identity information that includes restrictions on his full set of rights, or presents
a handle to an authentication/authorization server from which the gatekeeper may pull
information about the user and his rights.

We have mostly concentrated on the pull model in order to allow applications to use
Akenti authorization over standard TLS connections that transport and verify X.509
certificates. We have also experimented with a push model where Akenti is contacted by
the user and returns a signed capability certificate containing an authorization assertion
consisting of a subject’s Distinguished Name (DN), public key, the CA that signed for
this name, the name of the resource and the subject’s rights. If this is presented by the
user to a resource gatekeeper, along with an authenticated identity certificate, the
gatekeeper need only verify Akenti’s signature of the certificate, and verify that the
subject named in the capability is the same as that in the identity certificate. These

capability certificates are short-lived in order to avoid the problems of revocation.

2.2 Akenti policy language

Akenti policy is expressed in XML and stored in three types of signed certificates:
policy certificates, use-condition certificates and attribute certificates. Policy certificates
specify the sources of authority for the resource. Use-condition certificates contain the
constraints that control access to a resource. Attribute certificates assign attributes to
users that are needed to satisfy the use constraints.

Policy certificates are self-signed, co-located with the resources to which they apply
and contain only minimal information since they are centrally located and may be
administratively difficult to update. They are used to bootstrap and to provide closure for
the trust chain by specifying the sources of authority for a resource. The sources of
authority are the CAs who may sign X.509 certificates for all the principals involved in
an authorization decision and the stakeholders who may issue use-condition certificates
for the resource. Whenever a certificate is used, the Akenti policy engine will check that
it has been signed by an acceptable issuer, and that the signature verifies. The CAs are
represented by their X.509 certificates which provide a trusted copy of their public keys
and information about where they publish certificates and certificate revocation lists. The
stakeholders are represented by their Distinguished Names (DN) and the DN of the CA

that issued a certificate for that name and a list of places, specified by URLs, where the

stakeholders put the use-condition certificates that they issue. A policy certificate may
optionally contain a list of URLs in which to search for attribute certificates.

Resources controlled by Akenti authorization may be grouped into a resource realm.
A resource realm can be organized as a flat structure of resources such as instruments or
compute platforms, or a hierarchical structure such as a file system or set of Web
documents. Each resource realm has at least one policy certificate which must be stored
in a known and secure place. Normally it is on the same machine that controls access to
the resource, but it could also be on the platform where the Akenti server is running, if
they are different. In the case of hierarchical resources, there must be at least one policy
certificate at the top of the tree (referred to as the root policy). In addition, there may be
a policy certificate at any level where there are new stakeholders, or restrictions on the
allowed CAs. Levels without their own policy certificates inherit policy from higher
levels.

Each stakeholder group for a resource must create at least one and possibly more
use-condition certificates for the resource. A use-condition certificate consists of a
constraint, which is a relational expression of the attributes a user must have to get a
certain set of rights and a list of the principals who can attest to the required attributes.
Components of the X.509 distinguished name can be used as attributes such as CN=Mary
R. Thompson, or O=Diesel Combustion Collaboratory, or attributes can be defined in the
context of the resource. For example, role = researcher or group = accounting. These
attribute requirements can be combined with the Boolean operators && or ||. Negative
permissions such a group !'= accounting are not supported because of the difficulty in
requiring all the relevant attribute certificates to be found. It is also possible to specify
real-time or system attributes such as time<=5PM && time>=9AM, or system_load < 2.
If Akenti is unable to evaluate such system attributes it may return them to the resource
gateway for evaluation. An attribute authority (consisting of an issuer and its CA) is
specified as the signing authority for each attribute-value pair. See Figure 2 for an
example of a use-condition certificate.

A stakeholder may put use-condition certificates in more than one place for
reliability, but each directory must contain the complete set. Since use-conditions restrict
access to a resource, it is essential that either all or none of them be found. If no use-
conditions are found for a stakeholder group, all access to the resource is denied. This is
not the case with attribute certificates since they only serve to increase access. Thus a
missing attribute certificate may limit or deny a user’s access, but will never allow an

access that should be denied.

Attribute certificates contain an attribute-value pair and the principal to whom it
applies. They are signed by attribute authorities that have been specified in a use-
condition certificate. Attributes can apply to more than one resource, although they are
likely to be applicable in only a single resource realm. Akenti attribute certificates are
XML documents rather than the proposed IETF ASN.1 attribute certificates. (See the
section on Related Work for a more detailed comparison.) The complete XML schema
for Akenti certificates can be found on the Akenti Web site [AKENTI.XSD 2003].

2.3 Comparison to earlier authorization policy languages

A language to describe access policy typically involves making statements about some or
all of the following elements: requestor identity, grantor identity, a set of access rights, a
set of constraints [Ryutov, Neuman 2000]. The target resource to which the rights apply
may be explicit in the policy statement or may be implicit in the context. The identities
may be expressed as names or as public keys. The access rights are usually arbitrary
strings whose meaning is agreed on between the policy creator and the PEP. Constraints
can be expressed as a set of tokens, as a Boolean expression or in a special purpose
language. The names of the constraints e.g., group, role, time only need to be self-
consistent within the policy, the attribute assertions and the PEP.

Two basic types of authorization policy statements are: authorization assertions,
including rights delegation or capabilities, used in push model authorization systems and
resource-centric access policy statements used in pull models. The paper of Lampson, et
al. which describes a formal theory for authentication in distributed systems defines a
“speaks for” relationship that describes the delegation of rights [Lampson, et al. 1992].
The paper shows how such delegation of rights can be used to describe many of the
current access control methods. Neuman’s paper on proxy-based authorization [Neuman
1993] gives a clear description of various kinds of proxy certificates: full proxies,
restricted proxies, bearer and delegated proxies. It shows how restricted proxies can be
used to combine restrictions from access control lists with the ability of a trusted
principal to delegate its privileges to another principal. The CRISIS security architecture
[Belani 1998] implemented these ideas in transfer certificates in which one principal can
delegate a subset of its rights to another principal. The transfers are expressed as a list of
capabilities. There can be a chain of transfer certificates delegating a more limited set of

capabilities to additional principals.

Simple Public Key Infrastructure (SPKI) is an IEFT experimental protocol that
defines, among other things, a simple authorization certificate that can be used to allow
one principal (or authority) to delegate rights to another principal [Ellison 1999]. An
authorization certificate binds an authorization to a key and is expressed as a 5-tuple
consisting of: Issuer, Subject, DelegationAllowed (true or false), Authorization (an S-
expression) and Validity dates. The subject is represented either by its public key, or by a
name that is bound in a name certificate to a public key. One of the interesting ideas of
SPKI and other trust management systems, was to focus on the need to authorize a user’s
actions without first authenticating the user’s name. The certificates being used form a
chain of delegated rights that eventually chain back to a known authority.

The other common style of access policy is to define the access conditions for a
resource. This often takes the form of an extended or generalized access control list.
These lists can consist of an ordered set of elements that contain information about what
users or groups have what access. In the extended ACL used by the IETF’s GAA
protocol [Ryutov, Neuman 2000] and the Prospero Resource Manager [Ryutov 1999]
each token consists of a type, a defining authority and a value. Some token types are:
access identity, a set of positive rights, or the value of a constraint. In the GACL
specified by Woo and Lam, there is one element for each resource, but it can specify
rights for groups, individuals and inherited rights from other objects [T. Y. C. Woo, et al.
1993].

The emphasis in these early systems was to produce compact information structures
that were easily machine parseable. The KeyNote system [Blaze, et al. 1999] expanded
authorization assertions to a keyword/value format to make the certificates more human
readable. Here the conditions are also written as Boolean expressions. The first version of
Akenti also used keyword/value pairs and Boolean constraints. We eventually switched
to XML, as the complexity of the use-conditions required too much information to be
hidden implicitly in the ordering of the fields, thus defeating our goal of easily
understood certificates. (See the Related Work section for a more detailed comparison of
KeyNote and Akenti.)

In the context of the previous discussion, the Akenti static certificates contain
resource-centric access policy including trust relationships and attribute assertions.
Akenti returns its access decision in a dynamic short-lived capability certificate, signed
by the Akenti server. This certificate can be used as a delegation of rights proxy, where
the bearer is the user who made the authorization request and the grantor of the rights is

the Akenti authorization server. XML was the choice for the second implementation after

the desired policy expressions outgrew the simple ordered keyword/value pairs syntax.
Using XML makes the certificates more human readable at the expense of compactness.
Now that XML parsers and standardized methods for extracting information from DOM
trees are readily available, XML can be as easily, if not as efficiently, machine parsed and
interpreted. Of course, the amount of code needed to perform this is greater than that

needed for simpler or more rule oriented languages.

2.4 Creating policy

Since policy is contained in signed XML certificates, which are interdependent, a
stakeholder needs some tools to assist in the creation of certificates. A stakeholder starts
by creating the root policy certificate for the resource realm. The X.509 certificates of all
the trusted CAs must be available from a trusted source and are placed in the root policy
certificate. This certificate also contains the URLs of the locations where these CAs
publish certificates and certificate revocation lists. The first stakeholder must decide if
there are other stakeholders for the resource and, if so, include their DNs and CAs in the
root policy certificate. In a hierarchical set of resources, only the top-level stakeholders
need to be known initially. They in turn, can delegate control to other stakeholders for
resources lower in the hierarchy.

Akenti certificates can either be created by a command line tool that signs an XML
input certificate, or by a GUI program that steps a stakeholder through a menu of choices
for each field in the certificate. The GUI program is supported by a resource definition
server running on the resource host which in turn reads a resource definition file and any
existing policy certificates to find stakeholder names, acceptable attributes and actions for
a resource realm. The command line method is fine for very simple policy, and for the
root policy certificate, but as soon as the policy becomes hierarchical, or there are many
stakeholders, the GUI interfaces which prompt the stakeholder with acceptable choices
become preferable. The resource definitions file is only used to provide suggestions to the
policy creation GUIs. It includes the names of the CAs, and their publishing directories,
attribute names and values, the principals that are acceptable for issuing specific attribute
values, and a list of actions that are relevant to the resource realm. In summary the two
methods of getting started are:

« Create an XML version of a root policy certificate, following one of the templates
provided by the Akenti distribution, and use a command line program to sign it with
the stakeholder’s private key contained in a pkcs12 format file, and store it in the
resource tree.

» Create a resource definition file, start the resource definition server, and then use the

GUI program to create, sign and store a policy certificate.

The stakeholder must now create at least one use-condition certificate for the
resource. Anyone can create a use-condition certificate, but it will only be used during
authorization if it is issued and signed by one of the stakeholders currently listed in the
resource’s policy certificate.

Use-condition and attribute certificates can also be created by a command line
interface or the GUI certificate generator. In creating a use-condition certificate the
stakeholder will be presented with a menu of possible stakeholders for the resource (of
which he must be one), previously defined attribute/value pairs and their allowed
attribute authorities and the defined actions for the resource. The stakeholder is also
asked about such details as the length of time for which this certificate should be valid,;
the scope of the use-condition (does it just apply to the one resource or to a hierarchy of
resources); and whether it is a critical use-condition (it must be satisfied or the user gets
no access to the resource even if she satisfies other use-conditions). The use-condition
certificates must be stored in a directory that is specified in the policy certificate.

When creating an attribute certificate the stakeholder will be presented with a list of
defined attributes and values for the resource realm.

Once a set of policy, use-condition and attribute certificates has been stored, the

stakeholder can use a Web-based interface to see what access is allowed to the resource.

2.5 Checking access
The Akenti authorization service can be called in several ways: It can be invoked as a
function call by the PEP and thus run as part of the gatekeeper. It can be contacted as a
server through TCP or TLS and it will return a signed capability certificate. If an insecure
protocol is used, the gatekeeper must have a copy of the Akenti server’s public key and
verify the certificate, before it can trust the information. The Akenti server always returns
a signed capability certificate that may include both conditional and unconditional rights.
Conditional rights are rights that may have some conditions attached that only the PEP
can evaluate, such as current machine load, disk availability or the state of some related
system variable. We provide an API wrapper that will extract the unconditional actions
and return them as strings, and will parse and evaluate the runtime conditions calling an
evaluator function provided by the PEP.

As has been mentioned previously, the Akenti policy engine finds all the use-

conditions by searching in the URLs specified in the policy certificates and verifying the

issuer and signature on each certificate. If a use-condition certificate cannot be found for
each stakeholder group, access to the resource is denied. Attribute certificates are
searched by following URLs in either the policy certificates and/or use-conditions.
Again, the issuer and signature of each certificate is verified. This signature verification
requires that the Akenti policy engine be able to find the X.509 certificates for each
issuer. If the CAs who issue certificates publish them in an LDAP server, Akenti will
look there. Otherwise, there must be some setup actions taken to put all the expected
certificate issuers’ X.509 certificates in a file system or at a location specified by a URL.
Akenti caches all the certificates that it finds in order to reduce subsequent search time. It
also caches the authorization decision as a capability certificate that contains the access
rights of a user for a resource, so that subsequent requests for the same resource by the
same user require no repeated decisions. The lifetime of the cached certificates is set in

the policy certificate for the resource.

3. MOD_AKENTI MODULE FOR APACHE WEB SERVER

Web-controlled sets of documents and services have rapidly grown from collections
of read-only documents that are centrally administered to a vast array of remotely
managed documents and services. In the scientific community such Web-based systems
are increasingly used to provide a common interface to static documents, to allow shared
authoring of documents, to allow access to legacy data bases, to allow execution of codes
on shared server machines, and practically anything else an inventive scientist can think
of. Authentication to perform such access is usually implemented by the http Basic
Authentication mechanisms, (e.g. user/password or domain based) or by ad-hoc scripts
based on the username. In the standard HTTP protocol these passwords are passed across
the internet in clear text and are thus deemed insecure.

In order to make Akenti authorization available for the widest range of distributed
resources, we wanted to make it available to Web-accessed resources. There were several
ways to accomplish this: referencing resources through CGI scripts that called Akenti,
referencing resources through Java servlets or JSPs that called Akenti, or building Akenti
authorization into a Web server. The first two methods involve an indirection between the
request and response which is both less efficient and requires more complicated URLS to
refer to documents. Since the Apache Web server makes it straightforward to include new
functionality, we decided to build an Akenti module for Apache.

The Apache [APACHE 2002a] Web server is a widely used, high-performance

freeware server which is built around an API [Thau 2002] which allows third-party

programmers to add new server functionality. Indeed, most of the server’s visible features
(logging, authentication, access control, CGI, and so forth) are implemented as modules,
using the same extension API available to third parties. The modules can be statically or

dynamically linked to the server [Wainwright 2001].

3.1 How apache modules work
Apache divides the handling of requests into different phases:

* URI to file name translation
« Authentication and access checking
e Determining the MIME type of the requested entity
e Returning data to the client
* Logging the request

Each module can contribute to any of these phases. For each phase, a module can
completely replace an existing module or can be added to a list of existing modules. The
list of modules acts as a queue in which control is passed from one module to another.
Each module can return one of three values: OK, DECLINE and FORBID. If a module
returns OK, then the server passes the request on to other modules in the queue. A
module returns DECLINE when it wishes to ignore a specific request. A FORBID return
overrides other module’s replies and causes the server to forbid access to the resource
requested. Each module can declare a set of handlers to handle specific types of URI
requests. The interface between the server core and the extension modules is through a
module structure that consists of a vector of callback routines. A module provides a
callback for each phase that it wishes to handle and NULL for the rest. The module
structure for Apache 1.3.x allows a module to define a number of different callback
routines. Mod_Akenti defines only three of the possible procedures: two to handle
reading directives from the configuration file and one to check access.

Apache allows each module to read directives from the configuration file by
specifying a command table structure. The entries in the command table include the name
of the command, a pointer to the command handler, an argument which is passed to the

command handler.

3.2 How mod_akenti works
Mod_akenti is an Apache module that provides Akenti authorization capabilities for the
Apache Web s